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Abstract

We carry out a Hamiltonian analysis of Poisson-Lie T-duality based on the loop geometry of the
underlying phases spaces of the dual sigma and WZW models. Duality is fully characterized by the
existence of equivariant momentum maps on the phase-spaces such that the reduced phase-space
of the WZW model and a pure central extension coadjoint orbit work as a bridge linking both the
sigma models. These momentum maps are associated to Hamiltonian actions of the loop group of the
Drinfeld double on both spaces and the duality transformations are explicitly constructed in terms of
these actions. Compatible dynamics arise in a general collective form and the resulting Hamiltonian
description encodes all known aspects of this duality and its generalizations.
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1. Introduction

Poisson-Lie T-duality[1] refers to a non-Abelian duality between two 1+ 1σ-models
describing the motion of a string on targets being a dual pair of Poisson-Lie groups[2],
composing a perfect Drinfeld double group[3]. The Lagrangians of the models are written
in terms of the underlying bialgebra structure of the Lie groups, and Poisson-Lie T-duality
stems from the self dual character the Drinfeld double. Classical T-duality transformation
comes to relate somedualizable subspaces of these phase–spaces, mapping solutions re-
ciprocally. It comes to generalize the AbelianR ↔ R−1 [4] and non-AbelianG ↔ g∗ [6,5]
dualities which hold at classical and quantum level. Former version appears tied to the dual
symmetric structure of the target manifolds of dual models[7]. The Poisson-Lie T-duality
reproduces all of them when the symplectic structure on the Drinfeld doubleD = G�G∗
[8] is reduced to the cotangent bundleT ∗G with G a trivial Poisson-Lie group.

A generating functional for PL T-duality transformations[1,9] is constructed from the
symplectic structure onD, and it was shown[10] from algebraic properties in the dual La-
grangians they are canonical ones (although their domains remain unclear). Also, for closed
string models, a Hamiltonian description[11] reveals that there exists Poisson maps from the
T-dual phase-spaces to the centrally extended loop algebra of the Drinfeld double, and this
holds for any Hamiltonian dynamics on this loop algebra lifted to the T-dual phase-spaces.

In the pioneering works[1,12], it was proposed a WZW-type model with target on the
Drinfeld double groupD from which a PL T-dual pair ofσ-models are obtained, providing
a common roof and making clear how PL T-duality works: solutions on aσ-model are lifted
to the WZW model onD and then projected to the dual one. This setting makes natural
the appearance of the symplectic structure onD in the generating functional of the duality
transformations. However, in contrast with the Hamiltonian approach in[11], the dynamic
of the involved models were fixed to a very particular form. It was also noted that PL T-
duality just work on some subspaces satisfying somedualizable conditions expressed as
monodromy constraints. In the Hamiltonian approach to the AbelianR ↔ R−1 and non-
Abelian dualityG ↔ g∗, the dualizable spaces were well characterized[5] leading, for
example, to the momentum-winding exchange, but it is unclear how to do the same in PL
case.

An approach in the framework of bicrossed product of Lie algebras is presented in
Ref. [13], constructing and classifying many dual models for the quasitriangular case,
studying the possible orthogonal decomposition of the Drinfeld double algebra and fixing
appropriated Hamiltonian dynamics.

The main aim of this work is to carry out a unified description of classical PL T-duality
based on the symplectic geometry of the loop groups spaces involved in sigma and WZW
models. We encode it in the commutative diagram:

(1)
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where the left and right vertices are the phases spaces of theσ-models, with the canonical
Poisson (symplectic) structures,Ld∗Γ is the dual of the centrally extended Lie algebra of
LD with the Kirillov–Kostant Poisson structure, andΩD is the symplectic manifold of
based loops. In particular, alikêΦ, we deriveµ and µ̃ as momentum maps associated
to Hamiltonian actions of the centrally extended loop groupLD∧ on theσ-models. These
actions split the tangent bundles of the preimages underµandµ̃of the pure central extension
orbit, and the dualizable subspaces are identified as the orbits ofΩD which turn to be the
symplectic foliation. We shall show that the restriction of the diagram to these subspaces,
with symplectic arrows, gives precise description of the PL T-duality embodying its essential
features and providing a clear framework to link with other approaches. From this setting,
we shall be able to build dual Hamiltonian models by taking any suitable Hamiltonian
function on the loop algebra of the double and lifting it in a collective form[21]. For
particular choices, the Lagrangian formalism will be reconstructed obtaining the known
dualσ-models and the master WZW-like model encoding them.

This work is organized as follows: in Section1, we review the main features of the
symplectic geometry of the WZW model; in Section2, we describe the actions of theLD∧
on the phase-spaces of the sigma model with targetG andG∗, constructing the associated
momentum maps and explaining the connection of the group of based loops with this
phase-spaces of the sigma models; in Section3, the contents of diagram(1) are developed,
presenting the geometric description of the PL T-duality. The dynamical questions are
addressed in Section4, dealing with the Hamiltonian and Lagrangian descriptions of the
PL T-dual models. In Section5, we illustrate the construction for the Abelian and non-
Abelian duality, giving the explicit duality transformations and identifying the dualizable
subspaces. Finally, some conclusion and comments are condensed in Section7.

2. The WZW model phase-space geometry

The WZW model was proposed by Witten[15] as a modification of the principal sigma
model driving to equation of motion admitting factorizable general solutions:g(σ, t) =
gl(σ + t)gr(σ − t) org(σ, t) = gr(σ − t)gl(σ + t). This is attained by adding to the original
action of the sigma model the Wess–Zumino term, and the order of the light cone factors
in g(σ, t) depends on the sign of the added term.

As it is well known, the phase-space of a sigma model with target space the group
manifoldG is the cotangent bundleT ∗LG of the loop groupLG that turns to be a symplectic
manifold with the canonical symplectic formωo [17], and the dynamics is determined by
the election of the Hamiltonian function. However, there is no election of Hamiltonian
function on (T ∗LG,ωo) driving to equations of motion equivalent to the WZW ones. In
fact, as shown in Ref.[18], the addition of Wess–Zumino term amounts to a modification of
the canonical Poisson brackets onT ∗LG. Its symplectic counterpart is exhaustively studied
in references[16,26] and references therein, where a cocycle extension of the canonical
symplectic formωo is considered in combination with the Marsden–Weinstein reduction
procedure in order to recover the WZW equation of motion. This last description provides
the framework for our approach to Poisson-Lie T-duality, so it is worthwhile to briefly
review it below.
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Let us consider a connected Lie groupD and its loop groupLD. For l ∈ LD, l′ denotes
the derivative in the loop parameterσ ∈ S1, and we writevl−1 andl−1v for the right and
left translation of any vector fieldv ∈ TD. Let d be the Lie algebra ofD equipped with a
non-degenerate symmetricAd-invariant bilinear form (, )d. Frequently we will work with
the subsetLd∗ ⊂ (Ld)∗ instead of (Ld)∗ itself, and we identify it withLd through the map
ψ : Ld→ Ld∗ provided by the bilinear form:

(, )Ld ≡ 1

2π

∫
S1

(, )d

onLd. This bilinear form defines a two-cocycleΓk : Ld× Ld→ R [14]:

Γk(X, Y ) = k

2π

∫
S1

(X(σ), Y ′(σ))d dσ

with X, Y ∈ Ld. It is invariant under the action of the orientation preserving diffeomor-
phism group of the circle,Diff+(S1), and invariant under the adjoint action of constant
loops,Γk(AdloX,AdloY ) = Γk(X, Y ), for lo ∈ D. It can be derived from the 1-cocycle
Ck : LD → Ld∗:

Ck(l) = kψ(l′l−1)

We identify the cotangent bundleT ∗LD with LD× (Ld)∗ by left translation and, in
practice, we shall work onL(D× d∗). The pair (T ∗LD,ωo), whereωo is the canonical
two-form defined as[17]:

〈ωo, (v, ρ) ⊗ (w, ξ)〉(l,ϕ) = −〈ρ, l−1w〉Ld + 〈ξ, l−1v〉Ld + 〈ϕ, [l−1v, l−1w]〉Ld

for (v, ρ), (w, λ) ∈ T(l,ϕ)L(D× d∗), is the symplectic manifold on which sigma models with
targetsD are framed on. As explained above, the WZW model does not fit this symplectic
structure. Indeed, the symplectic manifold underlying the chiral sectors of the WZW model
is (T ∗LD,ωΓ ), with ωΓ being a symplectic two-form obtained by adding a cocycle term
toωo:

〈ωΓ , (v, ρ) ⊗ (w, ξ)〉(l,ϕ) = 〈ωo, (v, ρ) ⊗ (w, ξ)〉(l,ϕ) − Γk(vl
−1, wl−1)

for (v, ρ), (w, λ) ∈ T(l,ϕ)L(D× d∗). This symplectic structure has also a natural interpre-
tation in terms of symplectic groupoids[35] for the underlying infinite dimensional affine
Poisson algebra (for details see[33]). Indeed, the cocycleΓk defines an affine Poisson struc-
ture onLd∗ induced by the action groupoidH = LD�Ld∗ ⇒ Ld∗Aff , with LD acting by the
(right) affine coadjoint actionAl(ξ) = Ad∗

l ξ + Ck(l−1), and supplied with the symplectic
form:

ωRΓ = ωRo − Γk(dll
−1 ⊗ dll−1)
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whereωRo is the symplectic form onL(D× d∗) obtained from the standard one onT ∗LD
trivialized by right translations. So we see thatωRΓ becomes the above introducedωΓ under
the diffeomorphism (l, ϕ) → (l, Ad∗

l−1ϕ) which switches from left to right trivialization of
T ∗LD.

Observe thatωΓ it is no longer a bi-invariant two-form, only the invariance under right
translation�L(D×d∗)

m (l, µ) = (lm−1, Ad∗
m−1µ), m ∈ LD, remains. Tied to it there is a non-

Ad-equivariant momentum mapJR : L(D× d∗) → Ld∗:

JR(l, ξ) = −ξ + kψ(l−1l′)

with associated one-cocycle−Ck, so that JR(�L(D×d∗)
m (l, ξ)) − Ad∗

m−1J
R(l, ξ) =

−kψ(k′k−1) andJR is a Poisson map toLd∗Aff .
When the corresponding central extensionLD∧ of LD does exist,ωΓ can be obtained

from the standard symplectic structure onT ∗LD∧ � LD∧ × (LdΓ )∗ by reduction under the
correspondingS1 ⊂ LD∧ action and theAd-equivariance ofJR is then restored substituting
Ld by the centrally extended Lie algebraLdΓ , defined by the cocycleΓk. The centrally
extended adjoint and coadjoint actions ofLD∧ onLdΓ andLd∗Γ are defined as

Âdl(X, a) = (AdlX, a+ k〈ψ(l′l−1), X〉) Âd
∗
l−1(ξ, b) = (Ad∗

l−1ξ + bkψ(l′l−1), b)

Note that theS1 ⊂ LD∧ action is trivial and the embeddingξ ↪→ (ξ,1) is a Poisson map
fromLd∗Aff toLdΓ ∼ Ld× Rwhich maps theaffine coadjoint action ofLD to the centrally
extended one ofLD ↪→ LD∧. Now, the extended momentum mapĴR : L(D× d∗) → Ld∗Γ
is

ĴR(l, ξ) = (JR(l, ξ),1) = (kψ(l−1l′) − ξ,1) (2)

which isÂd
LD

-equivariant,ĴR(�L(D×d∗)
m (l, ξ)) − Âd

LD∗
m−1 ĴR(l, ξ) = (0,0).

The next step is to apply the Marsden–Weinstein reduction procedure[20] to the point
(0,1) ∈ Ld∗Γ . The restriction ofωΓ to (ĴR)−1(0,1) defines the degenerate two-form:

γ(v,w) = Γ (l−1v, l−1w) (3)

with null distribution generated by the infinitesimal action of constant loopsD. In fact,
in order to obtain the reduced space, (ĴR)−1(0,1) must be quotiented by the stabi-
lizer of (0,1) ∈ Ld∗Γ , that is, by the subgroup of constant loops,Stab(0,1) = D. Since
(ĴR)−1(0,1) = {(l, kψ(l−1l′))/l ∈ LD} ∼= LD, the reduced space can be identified with
the subgroup ofbased loops:

(ĴR)−1(0)

D
≡ ΩD = {[l] = ll−1(0)/l ∈ LD}

so that the fibration:

Λ : LD → ΩD/Λ (l) = [l] (4)
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with fiber D, provides the symplectic two-formωΩD onΩD defined fromΛ∗ωΩD = γ.
After the reduction procedure,ωΩD is still invariant under the residual left action ofLD on
ΩD:

LD×ΩD → ΩD/(m, [l]) → [ml] (5)

The associated momentum mapΦ : ΩD → Ld∗/Φ([l]) = kψ(l′l−1) is notAd-equivariant.
Again, introducing the extended momentum map:

Φ̂ : ΩD → Ld∗Γ /Φ̂([l]) = (Φ([l]),1) = Âd
LD∗
l−1 (0,1) (6)

the equivariance is restored and the vertical arrow in diagram(1) is explained. In fact, re-
member thatLd∗Γ is a Poisson manifold with Poisson bracket{f, g}KK(η) = 〈η, [df,dg]LdΓ 〉
and their symplectic leaves are the coadjoint orbits. Thereby,Φ̂ becomes into a sym-
plectic map (local diffeomorphism) onto the pure central extension orbitO(0,1) ≡ O,
Φ̂ : (ΩD,ωΩD) → (O, ωKK), with ωKK being the Kirillov–Kostant symplectic form that
onO reduces to

〈ωKK, âd∗
X(kψ(l′l−1),1) ⊗ âd

∗
Y (kψ(l′l−1),1)〉(kψ(l′l−1),1) = Γk(X, Y )

for X, Y ∈ (Ld/d)Γ . Then, for any vector [v] ∈ T[l]ΩD, one has Φ̂∗[v] =
−ad∗

vl−1Ad
∗
l−1(0,1) and

〈Φ̂∗ωKK, [v] ⊗ [w]〉[l] = Γ (l−1v, l−1w) = 〈ωΩD, [v] ⊗ [w]〉

It is worth remarking that only the coadjoint orbit through the pure central extension element
(0, a), namely (O(0,a), ωKK), is (locally) symplectomorphic to (ΩD,ωΩD).

3. Hamiltonian LD actions on dual phase-spaces

In the following subsections we shall introduceLD actions on the sigma model phase-
spacesLTG andLTG∗ for G andG∗ being dual Poisson-Lie groups composing a (connected,
simply connected) perfect Drinfeld doubleD, i.e., it admits a global factorizationD =
G�G∗. Under this conditions we have the exact sequences:

0 → g→ d→ g∗ → 0 0 → G → D → G∗ → 0

whered = g�g∗ is the Lie bialgebra ofD supplied with the symmetric invariant no de-
generate bilinear form (, )d given by the pairing betweeng andg∗, so they areisotropic
subspaces in relation to it. Identifyingg∗ with the Lie algebra ofG∗, we have the
embedding:

L(G× g∗)
ιG
↪→LD× Ld∗/(g, α) �→ (g,AdLD

∗
g−1 ψ(α) + Ck(g))
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and define the mapµ : L(G× g∗) → Ld∗Aff given by the diagram:

wheres(l, ξ) = ξ is a Poisson map (in fact, it is the source map for the symplectic groupoid
H = LD�Ld∗ ⇒ Ld∗Aff ). From the isotropy ofg with respect to (, )d, it can be easily seen
thatι∗Gω

R
Γ = ωLGo whereωLGo is the standard symplectic structure onLT ∗G ∼ L(G× g∗)

trivialized by left translations. Soµ is a Poisson map for this symplectic structure on
L(G× g∗), and an analogous construction can be repeated on the dual group giving the
Poisson map µ̃ : L(G∗ × g) → Ld∗Aff . This maps can be regarded as giving symplectic re-
alizations ofLd∗Aff and, as we shall see in the next sections, they give (non-equivariant)
momentum maps forLD actions onL(G× g∗) andL(G∗ × g). For simplicity, the centrally
extended loop groupLD∧ is assumed to exist, so (µ,1) and (µ̃,1) give the usual equivariant
momentum maps for the correspondingLD∧ actions, however we remark that all the fol-
lowing constructions can be performed also without usingLD∧ at all, just replacingLd∗Γ by
Ld∗Aff .

3.1. Hamiltonian LD∧ action on the G-sigma model phase-space

In this section we introduce aLD∧ symmetry on the sigma model with targetG. One
of the most striking features of the double Lie groups and Lie bialgebras is the existence of
reciprocal actions between the factorsG andG∗ calleddressing actions [19],[3]. Writing
every elementl ∈ Dasl = gh̃, withg ∈ Gandh̃ ∈ G∗, the product̃hg in D can be expressed
ash̃g = gh̃h̃g, with gh̃ ∈ G andh̃g ∈ G∗. The dressing action ofG∗ on G is then defined
as

Dr : G∗ ×G → G/Dr(h̃, g) = gh̃ (7)

The infinitesimal generator of this action in the pointg ∈ G is, for ξ ∈ g∗:

ξ → dr(ξ)g = − d

dt
Dr(etξ, g)

∣∣∣∣
t=0

such that, forη ∈ g∗, we have [dr(ξ)g,dr(η)g] = dr([ξ, η]g∗ )g. It satisfies the relation:

AdD
g−1ξ = −(Lg−1)∗dr(ξ)g + Ad∗

gξ (8)

where AdD
g−1ξ ∈ g�g∗ is the adjoint action ofD. Then, we can writedr(ξ)g =

−(Lg)∗ΠgAdDg−1ξ, withΠg : g⊕ g∗ → g being the projector.

From this dressing action we build up a symplectic action of the doubleLD∧ onT ∗LG
whose momentum map furnish the arrowµ in diagram(1). First, we introduce the map
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dLG : LD× LG → LG defined as

dLG(ab̃, g) = agb̃ (9)

for a, g ∈ LG andb̃ ∈ LG∗, which is a left action. It can be lifted to the left trivialization of
LT ∗G, namelyL(G× g∗), and then promoted to an action of the centrally extended double
LD∧ � LD× T1, as explained in the following proposition.

Proposition. The map d̂ : LD∧ × L(G× g∗) → L(G× g∗):

d̂(ab̃, (g, η)) = (agb̃, AdLD
b̃g
η+ k(b̃g)′(b̃g)−1) (10)

is a left symplectic action, with Âd
LD

-equivariant momentum mapping:

µ(g, η) = Âd
LD∗
g−1 (ψ(η),1) (11)

Proof. In order to obtaind̂, we lift the actiondLG, Eq. (9), to T ∗LG. In doing so, we
consider the associated mapdLG

ab̃
: LG → LG such thatdLG

ab̃
(g) ≡ dLG(ab̃, g). Its differ-

ential is (dLG
ab̃

)∗gv = (L
agb̃

)∗AdLG
∗∗

(b̃g)−1(g−1vg) for any tangent vectorv ∈ TgG, from where

we obtain the pullback on a one-formsα in the transformed pointagb̃:

(dLG
ab̃

)∗(agb̃, α) = (g, (Lg−1)∗AdLG
∗

(b̃g)−1(L
agb̃

)∗α)

In body coordinatesLG× Lg∗, and after a change of variables, we getd : LD× L(G×
g∗) → L(G× g∗):

d(ab̃, (g, η)) = (agb̃, AdLD
b̃g
η) (12)

which is a well defined action. The momentum mapµo : L(G× g∗) → Ld∗ associated to
this action is easily calculated from the infinitesimal generator of action(9):

(dLGg )∗e(X, ξ) = (Rg)∗X− dr(ξ)g

for any (X, ξ) ∈ Ld = L(g�g∗), with dLGg (ab̃) ≡ dLG(ab̃, g). Using expression(8), and by
the identificationψ : Ld→ Ld∗ provided by the bilinear form (, )Ld, we have

µo(g, η) = ψ(AdLDg η)

which obviously isAdLD-equivariant since it is associated to the lift to the cotangent bundle
of an action onLG.

The actiond is promoted to an action of the centrally extended doubleLD∧ � LD× T1,

d̂
L(G×g∗)

: LD∧ × L(G× g∗) → L(G× g∗) by the definition:

d̂((ab̃, θ), (g, η)) = (agb̃, AdLD
b̃g
η+ k(b̃g)′(b̃g)−1)
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where the elementθ ∈ T1 acts trivially, so it descends to anLD action and by this reason it
is omitted in(10). It is worth remarking that̂d is no longer a lift of a transformation onLG.

The infinitesimal action of some (X, ξ) ∈ L(g⊕ g∗) at the point (g, η) ∈ L(G× g∗) is
straightforwardly computed, giving

(d̂(g,η))∗e(X, ξ) = (Xg− dr(ξ)g, [AdLG
∗

g ξ, η]Lg∗ + AdLG
∗

g (adLd
∗

g′g−1ξ + ξ′)) (13)

and from this expression we calculate the momentum mapµ : LG× Lg∗ → L(g�g∗)∗Γ
using the canonical symplectic structureωo onL(G× g∗), obtaining

µ(g, η) = (AdLD
∗

g−1 ψ(η) + kψ(g′g−1),1) = Âd
LD∗
g−1 (ψ(η),1)

that satisfy thêAd-equivariance relation

µ(d̂(ab̃, (g, η))) = Âd
LD∗
(ab̃)−1µ(g, η)

Obviously, since (̂d(g,η))∗(X, ξ) are Hamiltonian for all (X, ξ) ∈ LdΓ , the Lie deriva-

tive L(d̂(g,η))∗(X,ξ)ωo = 0 meaning thatd̂
L(G×g∗)

leaves the canonical symplectic form
invariant. �

Now, some remarks are in order. First, note thatd̂ is not afree action, the subgroup
G∗ leaves invariant the point (e,0). Then, observe that if the central extension of the loop
group does not exist the above proposition still defines a HamiltonianLD action. We can
proceed in an analogous manner by using the affine Poisson structure and affine coadjoint
LD actions. Finally, (T ∗LG,ωo, d̂, µ) is aHamiltonianLD∧-space, withµ equivariant and
the image throughµ of T ∗LG is a union of coadjoint orbits inLd∗Γ .

3.2. Factorizing Φ̂ : ΩD → O(0,1) through LT ∗G

In this section we shall show thatΦ̂ : ΩD → O ⊂ Ld∗Γ can be factorized throughµ :
LT ∗G → Ld∗Γ on the pure central extension coadjoint orbit, composing a three vertices
commutative diagram like the left triangle of(1).

By definitionO ≡ O(0,1) = {ÂdLD
∗

(ab̃)−1(0,1)/ab̃ ∈ LD} and any point (g, η) ∈ µ−1(O) is,

due to the equivariance ofµ, of the form (g, η) = d̂(ab̃, (e,0)) for someab̃ ∈ LD implying
thatµ−1(O) is just the orbit ofLD through the point (e,0) ∈ L(G× g∗). In terms of the
orbit mapd̂(e,0) : LD → L(G× g∗):

d̂(e,0)(ab̃) = d̂(ab̃, (e,0)) = (a, kb̃′b̃−1)

we write

µ−1(O) = Im d̂(e,0)
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Hence, the tangent space of thisLD-orbit is spanned by the infinitesimal generators of the
actiond̂, given in Eq.(13), for every (g, η) = (a, kb̃′b̃−1) ∈ µ−1(O), and it can be split in
the direct sumd̂(Λ∗Ld) ⊕ d̂(AdLD

ab̃
d). In fact, for any tangent vector (V, ξ) to that point

there exist some [X] ∈ Λ∗Ld andXo ∈ d such that

(V, ξ)(g,η) = (d̂(g,η))∗e([X]) + (d̂(g,η))∗e(AdLDab̃ Xo) (14)

Observe that (̂d(e,0))∗ωo = γ, Eq. (3) and, beside to the fact thatωo|µ−1(O) = µ∗ωKK, it

amounts to a presymplectic submersionµ ◦ d̂(e,0) : (LD, γ) → (O, ωKK).

Theorem. Let ωo|µ−1(O) the restriction of ωo to µ −1(O). Then, its null distribution is

spanned by the infinitesimal generator of subgroupAdLD
ab̃
D with leaf through (a, kb̃′b̃−1) ∈

µ−1(O) beingµ−1(Âd
LD∗
(ab̃)−1(0,1)) = d̂

L(G×g∗)
([ab̃], (G,0)),soµ−1(O) → O is a fibration

with dimg-dimensional fibers. Moreover, their symplectic leaves are the orbits of ΩD by
the action d̂.

Proof. The isotropy group of a point̂Ad
LD∗
(ab̃)−1(0,1) ∈ O isAdLD

ab̃
D, and its infinitesimal

action pulled-back byµ gives rise to the null distribution ofωo|µ(O(0,1)). So, we have the
null foliation with leaf throughd̂(ab̃, (e,0)) being the orbits of the subgroupAdLD

ab̃
D and

of dimension dimg, as it can be seen from the relation:

d̂
L(G×g∗)

((ab̃)lo(ab̃)
−1, (a, kb̃′b̃−1))

= d̂
L(G×g∗)

((ab̃)lo, (e,0)) = d̂
L(G×g∗)

((ab̃), (go,0))

for all lo = goh̃o ∈ D or, infinitesimally, since for (g, η) = d̂(ab̃, (e,0)):

(d̂(g,η))∗e(AdLDab̃ Xo) = (d̂d̂(ab̃,(e,0)))∗e(Ad
LD
ab̃
Xo) = (d̂ab̃)∗(e,0)(d̂(e,0))∗eXo

and from(13) (d̂(e,0))∗eXo = (Πg(Xo),0) for allXo ∈ d.
The complementary distribution constitutes then the symplectic foliation ofωo|µ−1(O),

and it is spanned by the second term in the direct sum(14) with leaves being the orbits of
ΩD in µ−1(O).

All this can be obtained from a more general result contained in a theorem by Kazhdan,
Kostant and Sternberg[22] (see Theorem 26.2 in Ref.[21]). �

A further consequence is that any point (g, η) ∈ µ−1(O) can be characterized by a pair

([ab̃], go) ∈ ΩD×G such that (g, η) = d̂
L(G×g∗)

([ab̃], (go,0)).
Thinking of the composition:

µ−1(O)
µ→O Φ̂−1

→ ΩD

as a fibration, the direct sum(14) defines a connection with the horizontal subspace being
the orbitsS(go) of ΩD through the point (go,0), for eachgo ∈ G. Then, we may consider
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a sectionζ : ΩD → µ−1(O) with equivariance property:

ζ(l · [m]) = d̂(l, ζ([m]))

to obtain a factorization of̂Φ throughT ∗LG:

(15)

with arrows being presymplectic maps, reproducing the left triangle of diagram(1).
In order to get a symplectic factorization, we define a family{ςgo}go∈G of horizontal

sections with each image being a symplectic leafS(go) ⊂ µ−1(O), the labelgo being the
point (go,0) inµ−1(O) they pass through

ςgo : ΩD → S(go) ⊂ µ−1(O) ςgo ([l]) = d̂([l], (go,0))

for go ∈ G. Indeed, they are horizontal sections if one regards(14)as defining a connection
on the trivialG-bundle structure inµ−1(O).

Proposition. The map ςgo : (ΩD,ωΩD) → (S(go), ωo|S(go))is a symplectic map, for any
go ∈ G.

Proof. We have to show thatωΩD = ς∗
go
ωo|S(go). Letv ∈ TlLD, and [v] = Λ∗lv ∈ T[l]ΩD

a tangent vector to the point [l] ∈ ΩD. Then

(ςgo )∗[l] ([v]b) = (d̂ςgo ([l]) )∗([v][ l]−1)

whered̂ςgo ([l]) : LD → T ∗LG is the induced map by the actiond̂ describing the orbit of
LD through (go,0) ∈ L(G× g∗). Using the equivariant momentum mapµ and having in

mind that the stabilizer of the point̂Ad
LD∗
[ab̃]−1(0,1) isAdLD∗

ab̃
D, we conclude that

〈ωo|µ−1(O) , (ςgo )∗[l] [v] ⊗ (ςgo )∗[l] [w]〉
= 〈AdLD∗

l−1 (0,1), [[v][ l]−1, [w][ l]−1]LdΓ 〉 = Γk([l]
−1[v], [l]−1[w])

showing that (ςgo )
∗ωo|SR(go) = ωΩD. �
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Then, diagram(15)can be refined to the following commutative diagram with arrows being
symplectic maps:

(16)

for eachgo ∈ G.

3.3. Hamiltonian LD∧ action on the G∗-sigma model phase-space

Because of the symmetric role played byG andG∗in the doubleD, all the results obtained
above can be straightforwardly dualized just interchanging their roles. In spite of this general
principle, a few details and notation are in order.

Let us considerD with the opposite factorization, denoted asD → DT = G∗�G, so
that every element is now written ash̃g with h̃ ∈ G∗ andg ∈ G. Then, forg ∈ G and
h̃ ∈ G∗ there existh̃g ∈ G∗ andgh̃ ∈ G such thatgh̃ = h̃ggh̃. This factorization relates

with the opposite one bỹba = ((b̃−1)a
−1

)−1 andab̃ = ((a−1)b̃
−1

)−1. The dressing action

D̃r : G×G∗ → G∗ is D̃r(g, h̃) = h̃g and, by composing it with the right action ofLG∗

on itself, we get the actionbLG
∗

: LD× LG∗ → LG∗ defined asbLG(b̃a, h̃) = b̃h̃a with
a ∈ LG andh̃, b̃ ∈ LG∗.

For a sigma model on the targetG∗, the phase-space is the symplectic manifold
(T ∗LG∗, ω̃o). Then, we liftbLG

∗
to the left trivialization ofT ∗LG∗ ∼= L(G∗ × g), and

promote it to an extended symmetryb̂ : LD∧ × L(G∗ × g) → L(G× g∗):

b̂(b̃a, (h̃, Z)) = (b̃h̃a, Ad
LD
ah̃
Z + k(ah̃)

′(ah̃)
−1) (17)

with anÂd
LD

-equivariant momentum map:

µ̃(h̃, Z) = Âd
LD∗
h̃−1 (ψ(Z),1) = (ψ(AdLD

h̃
Z + k h̃′h̃−1),1) (18)

In terms of the orbit map̂b(e,0) : LD → L(G∗ × g) associated to the action̂b, Eq.(17):

b̂(e,0)(ab̃) = b̂(b̃a, (e,0)) = (b̃, ka′a−1)

and we get the identification:

µ−1(O) = Im b̂(e,0)

Analogously, we define an equivariant mapζ̃ : LD → L(G∗ × g) such that̃ζ(l · [m]) =
b̂(l, ζ̃([m])) and get a factorization of̂Φ throughT ∗LG∗ asΦ̂ = µ̃ ◦ ς̃h̃o , by symplectic



1128 A. Cabrera, H. Montani / Journal of Geometry and Physics 56 (2006) 1116–1143

maps, depicted in the diagram:

(19)

for eachh̃o ∈ G∗.

4. Poisson-Lie T-duality

Gluing together diagrams(15) and its mirror image, we recover the commutative four
vertex diagram(1) relating the phase-spacesLT ∗G andLT ∗G∗, belonging toσ-models
with dual targetsG andG∗, through vertex (ΩD,ωΩD) and (Ld∗Γ , {, }KK) and with arrows
beingLD∧-equivariant (pre)symplectic maps.

Actually, the relation holds provided there exist a non-trivial intersection region of the
images of the momentum mapsµ andµ̃ in (LdΓ )∗, that means, if there exist a set of points
(g, η) ∈ L(G× g∗) and (̃h,Z) ∈ L(G∗ × g) satisfying (see Eqs.(11) and (18)) the identity:

(ψ(η),1) = Âd
LD∗
h̃−1g(ψ(Z),1)

Becauseµ andµ̃ are equivariant momentum maps, the intersection region extends to the
whole coadjoint orbit of the pointµ(g, η) = µ̃(h̃, Z) in (LdΓ )∗, establishing a connection
betweenLD∧-orbits inLT ∗GandLT ∗G∗. It can be seen that this common region coincides
with the pure central extension orbit:

O = Imµ ∩ Im µ̃

and it is a isomorphic image of the WZW reduced space, so that we may refine diagram(1)
to get a connection between the phase-spaces of sigma models on dual targets and WZW
model on the associated Drinfeld double group:

(20)

Poisson-Lie T-duality is then accurately characterized by restricting this diagram to the
symplectic leaves inµ−1(O) andµ̃−1(O). In fact, lets us denote byS(go) ⊂ µ−1(O) and
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S̃(h̃o) ⊂ µ̃−1(O) the symplectic leaves defined by the mapsςgo : ΩD → µ−1(O) and
ςh̃o : ΩD → µ̃−1(O), respectively, then the composition of arrows:

(21)

defines theT-duality transformation:

Ψh̃o : S(go) → S∗(h̃o), Ψh̃o (g, λ) = (b̃(h̃o)a, (ah̃o )
′(ah̃o )

−1) (22)

where [ab̃] ∈ ΩD is a based loop such that (g, λ) = d̂([ab̃], (go,0)). This are nothing but
the duality transformations given in[1,10]. Obviously, as a composition of symplectic
maps,Ψh̃o is a canonical transformation and a Hamiltonian vector field tangent toS(go) is

mapped onto a Hamiltonian vector field tangent toS̃(h̃o). Passing throughΩD by Φ̂−1, as
showed in the diagram, allows to switchΩD to the opposite factorization [ab̃]B → [b̃aab̃]B
before to reach̃S(h̃o) by applying

ς̃h̃o : [ab̃]B → [b̃aab̃]B → b̂([b̃aab̃]b, (h̃o,0))

for (h̃o,0) ∈ µ̃−1(0,1).
Observe that diagram(1) can also be constructed for an arbitrary bicrossed productD =

G�M with a Lie algebrag�m supplied with a non-degenerate, symmetric, invariant bilinear
form, replacing the vertexLT ∗G by L(G×m). Now this vertex carries a presymplectic
structure defined by the pullbackι∗Gω

R
Γ and

L(G×m)
ιG
↪→LD× Ld∗, (g, α) �→ (g,AdD∗

g−1ψ(α) + Ck(g))

recovering the generalization of PL T-duality introduced in[13].

5. Collective Hamiltonians and duality transformations

Using thegeometrical or kinematical information of diagram(21) we now address to
impose the appropriate dynamics in order to it can be mapped through the arrows giving
dynamical T-duality transformations.

To this end, we observe thatΩD = Φ−1(O) and the symplectic leaves inµ−1(O),
µ̃−1(O) are replicas of the coadjoint orbitO and, because of their equivariance, their tangent
bundles are locally isomorphic to that ofO. AsO is in the vertex linking the three models, it
is clear that T-duality transformation(21)exist at the level of Hamiltonian vector fields for
each Hamiltonian vector onO. So, it is enough to select a Hamiltonian vector field inO and
symplectic leaves inµ−1(O) andµ̃−1(O) to obtain a couple of T-dual related Hamiltonian
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vector fields and, whenever they exist, a couple T-dual related solution curves belonging to
some kind of dual sigma models.

In terms of Hamiltonian functions, once a suitable functionh : (LdΓ )∗ → R is fixed
we have the corresponding Hamiltonian function onµ−1(O) andµ̃−1(O) by pulling-back
it through the momentum mapsµ and µ̃, so that the Hamiltonian function restricted to
µ−1(O), µ̃−1(O) andΩD are in the so-calledcollective Hamiltonian form [21]: h ◦ µ,
h ◦ µ̃ andh ◦Φ.

This ensures that the corresponding Hamiltonian vector fields will be tangent to the

LD orbits. Moreover, a Hamiltonian vector field in̂Ad
LD∗
l−1 (0,1) ∈ O is of the form

âd
LD∗
Lh

Âd
LD∗
l−1 (0,1) whereLh : (LdΓ )∗ → LdΓ is the corresponding Legendre transforma-

tion, and the solution curves are determined from the solution of the differential equation
on LD:

dtll
−1 = Lh(γ(t)) (23)

whereγ(t) is the trajectory of the Hamiltonian vector field corresponding toh. In fact, from

the curvel(t) ⊂ LD,with l(t = 0) = e, solution of the equation so thatγ(t) = Âd
LD∗
l(t) γ(0),

the solutions for the collective Hamiltonian vector fields onT ∗LG,ΩD andT ∗LG∗ are

d̂(l(t), (g0, η0)), [l(t)l0], b̂(l(t), (h̃0, Z0))

respectively, with l(t) given by (23) and for (go, ηo) ∈ µ−1(γ(0)), [l0] ∈ Φ̂−1(γ(0)),
(h̃0, Z0) ∈ µ̃−1(γ(0)).

We see that duality transformations betweenT ∗LGandT ∗LG∗ involve finding the curve
l(t) solution to Eq.(23)and using the two factorizations of the doubleD = G�G∗ ∼ G∗�G.
The generating functional on the dualizable subspaces is given in terms of the potentialsϑo
andϑ̃o of the symplectic forms on the dual phase-spaces by[9]:

dVF [g, g̃] = ϑo − ϑ̃o|SR×S̃R = 〈g−1 dg, h̃h̃−1〉 − 〈g̃−1 dg̃, h′h−1〉

= −
∫
S1
l∗(ιVω

STS)

whereV is a vector field along the loopl = gh̃ = g̃h in D andωSTS is the symplectic form
on the doubleD [19,8]. This leads to the well known generating functional formula[1] for
PL T-duality.

Also note that, in order to have a non-trivial duality, restriction to the common sector in
(LdΓ )∗ where all the moment maps intersect is required, i.e., to the coadjoint orbitO. This
is why the study of the pre-imagesµ−1(O) andµ̃−1(O) of the last section becomes relevant.
So, from now on, we shall refer to this pre-images asdualizable or admissible subspaces.

Now, a couple of remarks are in order. First, note that an analogous diagram to(1) can
be constructed by replacing one of the phase-spaces by anyLD∧-Hamiltonian space. The
same statements will hold for collective Hamiltonian dynamics and so we can construct
the corresponding duality transformations. This will lead us, as special cases, toBuscher’s
duality introduced in[1] and to duality between different factorizations of the Drinfeld
double bialgebrad = m+m∗, some giving the so called PL T-plurality[28].
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We also like to remark, before passing to the next section, that even when the central
extension of the loop groupLD does not exist, the same diagrams can be constructed
and all the statements about collective dynamics (and so all about T-dualtity and duality
transformations) still hold after replacement of the dual of centrally extended loop algebra
(LdΓ )∗ by Ld∗Aff with the affine Poisson structure defined by the cocycleΓ and the affine
coadjoint action defined in Section1.

In the following subsections, we shall study the dynamics of collective Hamiltonians
and the corresponding Lagrangian formulation for the T-dual WZW and sigma models.

5.1. Hamiltonian and Lagrangian WZW model

The WZW model reduced spaceΩD is mapped into the coadjoint orbitO by the momen-
tum mapΦ̂ : ΩD → O associated to the residual left invariance(5). So, let us consider a
HamiltonianHWZW(g, η) for the chiral WZW model which, when restricted to the reduced
spaceΩD = (ĴR)−1(0,1)/D, it is in collective form:

HWZW(l, ϕ)|ΩD = h ◦ Φ̂([l])

for some functionh : (LdΓ )∗ → R. We shall consider a quadratic Hamiltonian which,
having in mind that̂JR(l, ϕ) = (kψ(l−1l′) − ϕ ,1) (2), can be written in general form as

HWZW(l, ϕ) = k2

2
(l′l−1,L1l

′l−1)Ld + 〈AdLD∗
l−1 ϕ,L2l

′l−1〉

+ 1
2〈AdLD∗

l−1 ϕ,L3ψ̄(AdLD∗
l−1 ϕ)〉

for some linear self adjoint operatorsLi : d→ d. The equations of motion(23) for this
Hamiltonian are

l̇l−1 = kL2l
′l−1 + L3ψ̄(AdLD∗

l−1 ϕ),

ϕ̇ = k(AdLD
l−1 (k(L1 + L2)(l′l−1) + (L2 + L3)ψ̄(AdLD∗

l−1 ϕ)))′

− kadLd∗
l−1l′ψ(AdLD

l−1 (kL2l
′l−1 + L3ψ̄(AdLD∗

l−1 ϕ))) (24)

When restricted to (̂JR)−1(0 ,1) = {(l, kψ(l−1l′))/l ∈ LD} ∼= LD, they become into

l̇l−1 = k(L2 + L3)l′l−1,

d

dt
ψ(l−1l′) = k(Adl−1((L1 + L2)(l′l−1) + (L2 + L3)(l′l−1)))′

− kadLd∗
l−1l′Ad

LD∗
l ψ((L2 + L3)l′l−1)

Observe that forL1 = −L2, the second equation is derived from the first one, ensuring
the Hamiltonian vector fields are tangent to the reduced submanifold (ĴR)−1(0,1). Thus, a
suitable quadratic Hamiltonian for the WZW model must have the form:
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HWZW (l, ϕ) = k

(
ψ̄(AdLD∗

l−1 ϕ) − k

2
l′l−1,L2l

′l−1
)
Ld

+ 1
2(ψ̄(AdLD∗

l−1 ϕ),L3ψ̄(AdLD∗
l−1 ϕ))Ld (25)

that, when reduced toΩD, becomes into

HWZW(l, ϕ)|ΩD = 1
2(ψ̄(Φ̂([l])), (L2 + L3)ψ̄(Φ̂([l])))Ld (26)

unveiling its collective form in the momentum mapΦ̂, for a quadratic Hamiltonian function
h : (LdΓ )∗ → R.

In order to pass toΩD, we observe thatl = lo ∈ D and the reduced equation of motion
implies l̇ol−1

o = 0, so that

d[l]

dt
[l]−1 = kL

d[l]

dσ
[l]−1

withL = L2 + L3, which is derived from(23). Finally, it is easy to see that the corresponding
action functional is

SWZW(l) = 1

2

∫
Σ

〈∂θll−1, ∂tll
−1〉 + 1

2

∫
Σ

〈∂θll−1,L∂θll
−1〉

+ 1

12

∫
B

〈dll−1, [dll−1, dll−1]〉 (27)

whereΣ is a 1+ 1 domain with a periodic variableθ, andB is a three-dimensional do-
main such that∂B = Σ. The “initial values” for the Hamiltonian equation of motion(24)
which comes from(23) are boundary conditions for the fieldsl(σ, t). This boundary con-
ditions fix the topology ofΣ, the main examples are: if the condition is to be defined
for all non-negative time andl(σ, t = 0) = e for all σ, then the domain of the fieldsΣ
has the topology of the disc; if the condition is to be defined for all finite time and
l(σ, t = 0) = l0(σ) for somel0 ∈ LD, then the domain of the fieldsΣ has the topology of the
cylinder.

Now, the first two terms on the action give the potential 1-form for the symplectic two-
form ωΩD in ΩD and the third term is the corresponding Hamiltonian. We recognize here
the WZW model first proposed by Klimcik and Severa if we take a specific choice of the
operatorL. Up to the moment, there are no constrains on this operators but we shall see
below that this constrains appear in order to reproduce sigma model like Lagrangians on
the targetsG andG∗ and we also describe how the boundary conditions on the fields get
mapped to the dualizable subspaces.

5.2. Hamiltonian and Lagrangian T-dual sigma models

As explained above, classicalT-duality is a consequence of a common collective dy-
namics on the non-trivial intersection of the images of momentum maps of systems
whose phase-spaces areLD∧-modules. This dynamics is fixed by a Hamiltonian func-
tion h : (LdΓ )∗ → R and the equation of motion(23) describes the Hamiltonian vector
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fields mapped by the momentum maps. Analyzing the dynamics of the WZW model in
the previous section, we fixed the collective dynamics to be a quadratic Hamiltonian func-
tion so that the Hamiltonian function on the sigma model phase-spaceT ∗LG is given
by

Hσ(g, η) = 1
2(ψ̄(µ(g, η)),Lψ̄(µ(g, η)))Ld

We note that only the symmetric part of the operator (L2 + L3) with respect to the bilinear
form (, )Ld contributes. So we call this symmetric partE : d→ d and, using Eq.(18),we
write

Hσ(g, η) = 1
2(AdLDg η+ kg′g−1, E(AdLDg η+ kg′g−1))Ld (28)

In order to recover the Lagrangian functional associated to this Hamiltonian, we infer
the inverse Legendre transformation from the Hamilton equation of motion forg:

g−1ġ = ΠgEgΠg∗ (η) +ΠgEgΠg(g
−1g′)

whereEg = AdLD
g−1EAd

LD
g . For simplicity, we set from now onk = 1 and assume the Leg-

endre transformation is non-singular which requires the operatorΠgEgΠg∗ : g∗ → g to be
invertible for allg ∈ G. However, it must be remarked that non-invertibility would give rise
to constrains and gauge symmetries, leading to coset sigma models[29] and constrained
systems like the WZNW[12] for an appropriate choice of the kernel.

Let us nameGg = (ΠgEgΠg∗ )−1 : g→ g∗ andBg = −Gg ◦ΠgEgΠg : g→ g∗, then

η = Gg(g−1ġ) + Bg(g−1g′)

Now a question arise: when does the resulting Lagrangian have a sigma model form? Recall
that the Lagrangian of a (non-singular) sigma model can be written in the form[9]:

L = 〈g−1g−, (Gg + Bg)g−1g+〉 (29)

for Gg being a symmetric invertible operator (the metric),Bg an antisymmetric operator
(theB-field), both fromg→ g∗ and depending on the pointg ∈ G (the symmetry properties
referred to the bilinear form given by the pairing〈, 〉).

The answer to this question is given by the following lemma, in terms of the algebraic
properties of the operatorEg in the vector spaceg⊕ g∗.

Lemma. The Lagrangian coming from the collective Hamiltonian given by the symmetric
operator E defines a sigma model given by the Lagrangian (29)with Gg = Gg and Bg = Bg
iff one of the following equivalent conditions are fulfilled for each G:

1. Bg is antisymmetric and Gg − Bg(Gg)−1Bg = Πg∗EgΠg;
2. (Eg)2 = 1;
3. E2 = 1;
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4. As a block matrix in g⊕ g∗, we have

Eg =
( −(Gg)−1Bg (Gg)−1

Gg − Bg(Gg)−1Bg Bg(Gg)−1

)
(30)

5. d = g⊕ g∗ = E+g ⊕ E−g where E±g are the ±1 eigenspaces of Eg having the dimension
equal to dimg and being orthogonal to each other.

Conversely, the Hamiltonian coming from a Lagrangian (29)is in collective motion form for
the moment map µ and quadratic non-singular Hamiltonian on Ld if the operator defined
by (30) satisfies Eg = AdLD

g−1EeAd
LD
g .

The proof of this lemma is straightforward. It gives the exact relation between the col-
lective Hamiltonian form and the sigma model data[1,30]. We remark that the equivalences
rely only on the algebraic properties of the vector spaceg⊕ g∗ with the pairing as a bi-
linear form and the symmetry ofE (Eg will be also symmetric by theAd-D invariance
of (, )Ld).

Note that this kind of operators can be given by (generalized) complex structures
on the double algebra. This observation becomes relevant in the supersymmetric case
[25].

In order to give a more explicit expression for the sigma model Lagrangian, we introduce
graph coordinates for the eingenspacesE±g ong⊕ g∗(following the description of[13]):

E±g = {X⊕ (BgX± GgX), X ∈ g}

This can be easily inferred from the matrix form of the operatorEg. Now, using the dual
graph coordinates:

E±g = {φ ⊕ (Bg ± Gg)−1φ, φ ∈ g∗}

and relating them to the ones forg = e, noting thatv ∈ E±g iff Adgv ∈ E±e , so

Adg−1(φ ⊕ (Be ± Ge)−1φ) = Πg∗Adg−1φ ⊕ Adg−1((Be ± Ge)−1φ+AdgΠgAdg−1φ)

= Πg∗Adg−1φ ⊕ (Bg ± Gg)−1(Πg∗Adg−1φ)

and we can deduce that

(Bg ± Gg)−1(φ) = ΠgAdg−1Πg((Be ± Ge)−1φ + AdgΠgAdg−1Πg∗Adgφ)

Finally

ΠgAdgΠg(Bg ± Gg)−1Πg∗AdgΠg∗ = (Be ± Ge)−1 + π(g) (31)

whereπ(g) = ΠgAdgΠg∗Adg−1Πg∗ = −πR(g−1), andπR gives the Poisson bivector right
translated to the origin on the Poisson-Lie groupG coming from the Lie bialgebra structure
of (g, g∗) (see[3], for example).
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So, coming back to the sigma model Lagrangian, we have

L = 〈g−1g−, (Bg + Gg)g−1g+〉 = 〈g−g−1, ((Be + Ge)−1 + π(g))−1g+g−1〉

where in the last expression we recognize the Lagrangian of the sigma model on the target
G first introduced by Klimcik and Severa[1].

The corresponding dual construction can be repeated following analogous steps, inter-
changing the roles ofG andG∗, yielding the dual sigma model Lagrangian on the target
G∗:

L̃ = 〈g̃−g̃−1, ((Be + Ge) + π̃(g̃))−1g̃+g̃−1〉

whereπ̃ is the corresponding Poisson bivector of the Poisson-Lie structure onG∗, coming
from the bialgebra (g∗, g).

From the construction developed on the preceding sections we know that this two models
are “dual” to each other and to the WZW model defined by(27), in the sense that solutions
contained in the dualizable subspace in one model can be mapped through the coadjoint
orbitO to the other model, and theduality transformation involves finding the appropriate
curve inLD∧ and generating the dual flows by the action of this curve on the initial value.
Conversely, we can ask when a generic sigma model on the targetG will be dualizable in
the above sense. The answer to this question within the Lagrangian formalism was given
in the pioneer works[1]. So we conclude this section giving the exact relation between
the Lagrangian dualizability conditions (the so-called Poisson-Lie symmetry of the sigma
model Lagrangian) and the information contained in our Hamiltonian approach. To that
end, following[1], we introduce the following 1-form overΣ with values ing∗:

J = Πg∗ (G+ B)g−1g+dx+ −Πg∗ (G− B)g−1g−dx−

and we recall that a sigma model given by(29) is called (right) PL-symmetric with respect
to g∗ if

J = 1

2
[J, J ]g∗ (32)

over the solutions and where a Lie bracket is given ong∗. It was shown that this equations
require certain compatibility conditions, namely, the bracket ong∗ should be such that
(g, g∗) becomes a Lie bialgebra, and that theG-dependent operatorsGg andBg defining
the sigma model should satisfy the compatibility condition:

LXL(g)〈Y, (G− B)Z〉 = −〈X, adg∗Πg∗ (G−B)Z(Πg∗ (G+ B)Y )〉 (33)

for X, Y,Z ∈ g,LXL(g) is the Lie derivative with respect toXL, the left invariant vector
field on LG generated byX for all g ∈ LG. Note that ifGg − Bg is G-independent, this
compatibility condition onGg andBg defines a quasitriangular structure on the Lie bialgebra
(g, g∗) [13,30].
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This PL-symmetry condition defines, whenΣ is contractile (for example, with the topol-
ogy of the disc), a functioñh : Σ → G∗ such thatJ = dh̃h̃−1 and is easy to see that the
equation(32)becomes equivalent to

(1 ± E)l∓l−1 = 0

for l = gh̃ andE = AdgEgAdg−1 with Eg the operator given by the matrix(30) in terms of
Gg andBg. Moreover, the compatibility condition first order Eq.(33)defines howGg andBg
depend ong ∈ G and it can be proved that it is equivalent to the fact that the operatorE just
defined is constant for allg ∈ G, soEe plays the role of initial values for these equations.
We see thatE fulfills the conditions of the previous lemma, so we have the following
lemma.

Lemma. Let Σ be contractile and with a periodic spatial coordinate σ. A sigma model
Lagrangian given in the form (29)is (right) PL symmetric respect to g∗ iff the corresponding
Hamiltonian function on LT ∗G is in collective motion form for the moment map µ and the
quadratic function 〈v, Ev〉 on Ld∗Γ defined by the symmetric and idempotent operator E
on d.

In the case of the cylinder topology (remember the relation we stated between the topol-
ogy of the 1+ 1 domain and the initial values for the Hamiltonian equations of motion for
l(σ, t)), this is also true once we have imposed a unit monodromy constraint for the current
J (see below).

Finally, we shall comment on the restriction to the dualizable subspaces. Up to now,
we know by construction that there is a (unique up to constantG∗ elements) correspon-
dence between solutions of the dualizable sigma model (g, h̃) and Hamiltonian integral
curves (g, h̃′h̃−1). Now, the image of such a solution through the momentum mapµ lies
in the coadjoint orbitO(h̃′h̃−1,1) inside (LdΓ )∗ and it is easy to see thatO(h̃′h̃−1,1) = O
iff h̃ is periodic in the spatial variable (i.e., iff it is a loop for allt). So the restric-
tion to the dualizable subspace can be expressed as a unit monodromy constrain on
J = dh̃h̃−1:

h̃(0, t) = h̃(2π, t)

or equivalently

P

∫
γ

dh̃h̃−1 = ẽ

for any closed pathγ homotopic to a constant time loop inΣ, and the same holds for the
dual model, as first noted by Klimcik and Severa.

So, as the Lagrangian on theG target describes the Hamiltonian dynamics in the whole
phase-spaceLT ∗G it is natural to ask what kind of models arises when we replaceLT ∗G∗
by other phase-space such that it has a non-trivial intersection with the other coadjoint orbits
(the image of the subspaces restricted by non-trivial monodromy conditions)O(α,1), with
α ∈ Lg∗, which also lie inµ(LT ∗G). Such models should have phase-spaces consisting



A. Cabrera, H. Montani / Journal of Geometry and Physics 56 (2006) 1116–1143 1137

of non-closed paths inG∗ (because of the non-trivial monodromy ofα). Examples of this
models are the ones given in[27].

The reader might also note that the Poisson structures on such open path spaces are closely
related to the ones associated to the chirally extended WZW phase-space[26], which are
alsoLD spaces, and from this point of view one could have a better understanding of the
appearance of (finite dimensional) P-L symmetries generated by the monodromy matrix of
the resulting open strings variables[36].

6. Examples

We will now give some examples to illustrate on the construction of the duality trans-
formations and admissible subspaces for special simple choices of the double group and
the Hamiltonian dynamics, recovering a full explicit description of known results on target
space duality.

6.1. Abelian duality and R → 1/R momentum-winding interchange

In this example, we take a trivial Lie bialgebra (g, [, ] = 0, δ = 0), which has a trivial
dual bialgebra and a trivial double (g∗, [, ] = 0, δ = 0), (d, [, ] = 0, δ = 0), respectively.
Moreover, we takeg to be the Lie algebra of the one-dimensional Abelian groupG = UR(1)
thought as a circle of radiusR with group law the translation along the circle. Being the
bilinear form (, )d on the double Lie algebra the pairing betweeng and its dualg∗, we
can choose the dual group to beG∗ = U1/R(1), thedual circle of radius 1/R, since we can
naturally think ofg and its dualg∗ as the corresponding tangent spaces at the origin and if we
parametrize the group elements asRx andR−1x with x ∈ [0,2π] then〈R∂x, R−1dx〉 = 1.
We choose the (non-simply connected) double group to beD = UR(1) × UR−1(1). The
Poisson bracket onLd∧∗ is pure central extension{, } ≡ Γ , and we choose the Hamiltonian
function onLd∧∗ to be

H(X, ξ, a) =
∫
S1

dσ

(
1

2R2 ξ
2 + R2

2
X2
)

The phase-spaces of the dual models areLT ∗UR(1) andLT ∗U1/R(1),with parametrized
elementsγ = (θ(σ), π(σ)) ∈ LT ∗UR(1) and γ̃ = (θ̃(σ), π̃(σ)) ∈ LT ∗U1/R(1). The mo-
ment maps associated with theLD action areµ(θ(σ), π(σ)) = ( d

dσ θ(σ) + π(σ),1) and
µ̃(θ̃(σ), π̃(σ)) = ( d

dσ θ̃(σ) + π̃(σ),1). The Hamiltonians on the phase-spaces written on the
collective form are

H(γ; σ) =
∫
S1

dσ

[
1

2R2π(σ)2 + R2

2

(
dθ

dσ

)2
]
,

H̃(γ̃; σ) =
∫
S1

dσ

[
1

2R2

(
dθ̃

dσ

)2

+ R2

2
π̃(σ)2

]
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The duality transformationΨ : µ−1(O) → µ̃−1(O) can be constructed following the
arrows of the diagram(1):

(34)

so we get

Ψ (γ(σ)) = γ̃(σ) =
(∫ σ

0
π(ζ) dζ,

dθ

dσ
(σ)

)

Proceeding analogously, starting from the dual part, we obtainΨ̃ . By construction

Ψ∗H̃ = H

The admissible subspaceµ−1(O) in LT ∗UR(1) is of the form {(θ, α̃) · (θ0,0) =
(θ + θ0, α̃

′)/ : (θ, α̃) ∈ ΩD} since D is Abelian and so the dressing actions are triv-
ial. Similarly, µ̃−1(O) = {(θ̃, α) · (θ̃0,0) = (θ̃ + θ̃0, α

′)/ : (θ̃, α) ∈ ΩD} in LT ∗U1/R(1).
We note that the elements inΩD giving the duality transformations haveθ(0) = 0 or
they have nomomentum zero modes in their Fourier expansion. This corresponds, as
in the general PL case, to the unit monodromy constraint (see[27]). Now, the topol-
ogy of theU(1) targets allows us to introduce a refined description of the dualizable
subspaces.

As every element (θ, θ̃) ∈ L(UR(1) × U1/R(1)) is classified by its homotopic class or
“winding number” we then define the subsets:

L(n,m) = {(θ, θ̃) ∈ L(UR(1) × Ufrac1/R(1))/ : degθ = nand deg̃θ = m}

Soµ−1(O) = ∪(LR(n,m)) = ∪{(θ, π)/ : degθ = n and
∫
S1 π = 2πm} andµ̃−1(O) =

∪(L1/R(n,m)) = ∪{(θ̃, π̃)/ : degθ̃ = n and
∫
S1 π̃ = 2πm}. Moreover, its easy to see that

the Hamiltonian flows preserves these winding numbers and so theLR(n,m) andL 1
R

(n,m)

are sub-Hamiltonian systems ofLT ∗UR(1) andLT ∗U1/R(1) respectively, which lie inside
the dualizable subspaces. Finally, we see that the duality transformationΨ mapsLR(n,m)
to L1/R(m, n) interchangingR → R−1 and the winding numbern to be the momentum
number in the dual model and the momentum numberm to the winding number in the dual
model. Hence, we have recovered the momentum-winding duality transformation and the
domain of these transformation in the phase-spaces as described in[5] within our general
framework.
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6.2. Semi-Abelian or non-Abelian G ↔ g∗ duality

In this example, we take the bialgebrag to be semi-trivial, that is, (g,[, ], δ = 0). So
(g∗, [, ] = 0, δ) and the double (d, [, ], δ) can be identified as a Lie algebra with the semi-
direct product of (g,[, ]) and (g∗, [, ] = 0) whereg acts ong∗ by the coadjoint representation.
We will takeG as a compact simple group and in role ofG∗ we considerg∗ as an additive
Abelian group, so the double group can be identified with the semi-direct productD =
G�g∗, with G acting by the coadjoint representation. The phase-spaces areLT ∗G and
LT ∗g∗ and taking the product onG�g∗ to be

(g, η) · (h, λ) = (gh, λ+ AdLG∗
h η)

we have that (g, η)−1 = (g−1,−AdLG∗
g−1 η) and the momentum maps corresponding to theLD

actions on them areµ(g, η) = (kg′g−1 + AdLG∗
g−1 η,1) for (g, η) ∈ L(G× g∗), the left trivial-

ization ofLT ∗G, andµ̃(η,X) = (X+ η′ + adLG∗
X η,1) for (η,X) ∈ LT ∗g∗. The coadjoint

D andLD actions become

AdD(g,η)(X, ξ) = (AdGg X,Ad
G∗
g−1ξ + AdG

∗
g−1ad

G∗
X η),

Âd
LD∗
(g,η)(0,1) = ((g, η)′ · (g, η)−1,1) = (g′g−1 + AdLG

∗
g−1 η

′,1)

for (g, η) ∈ LD acting onLd∧∗. The actions on the cotangent bundles can be derived from
the dressing action for this particular case:

(g, η) = (g,0) · (e, η) = (e, α) · (g,0) ⇒ gη = g, αg = AdLG
∗

g α,

(g, η) = (e,AdLG
∗

g−1 η) · (g,0) = (g,0) · (e, η) ⇒ ηg = AdLG
∗

g−1 η, gη = g

so that

d̂((h, ξ), (g, η)) = d̂((h,0) · (e, ξ), (g, η)) = (hg, η+ (AdLG
∗

g ξ)′),

b̂((h, ξ), (η,X)) ≡ b̂((e,AdLG
∗

h−1 ξ) · (h,0), (η,X))

= (AdLG
∗

h−1 ξ + AdLG
∗

h−1 η,Ad
G
h X+ h′h−1)

From here we can get the elements ofµ−1(O) andµ̃−1(O):

µ−1(O) = d̂((h, ξ), (go,0)) = (hgo,Ad
LG∗
go

ξ′),

µ̃−1(O) = b̂((h, ξ), (η0,0)) = (AdLG
∗

h−1 ξ + AdLG
∗

h−1 η0, h
′h−1)
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for (h, ξ)(σ = 0) = (e,0) and, following the arrows in diagram(22):

we get the duality transformation:

Ψηo (hgo,Ad
LG∗
g−1
o
ξ′) = (AdLG

∗
h−1 (ξ − ξo) + AdLG

∗
(hh−1

o )−1ηo, h
′h−1) (35)

The admissible subspaceµ−1(O) in LT ∗G is

LD · (e,0) ∼ (LG,Ωg∗)

andµ̃−1(O) in LT ∗g∗ is

LD · (0,0) ∼ (Lg∗,ΩG)

The inverse duality transformation can be computed following the arrows in(1) in the
other direction:

where (ηo,0) ∈ µ̃−1(O), so we get

Ψ̃go (Ad
LG∗
h−1 ξ + AdLG

∗
h−1 ηo, h

′h−1) = (hh−1
o go, Ad

LG∗
go

ξ′) (36)

This duality transformations can be obtained from a generating functional:

Γ (h, ξ) = −
∫
S1

〈ξ(σ), h′h−1〉 = −
∫
S1
l∗ϑ

as it is done in[5]. The last equality follows forl = (h, ξ) from the general formula for the
generating functional of the duality transformations and the fact that forD = G�g∗ the
symplectic form on the double is exactωSTS = dϑ. In Ref.[5], they take a slightly different
functionalΓ (ϕ−1ϕ′, ξ) = − ∫

S1〈ξ(σ), ϕ−1ϕ′〉 that leads to equivalent duality transforma-
tions which can be derived within our framework by takingLT ∗G ∼ L(G× g∗) trivial-
ized by right translations and the cocycleΓ on LD by Γ (l) = l−1l′ and repeat the whole
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procedure of constructing the mapsµ andφ in an analogous way changing left by right in-
variants. The discussion about the correct domain for the duality transformations is, within
our framework, very simple because by construction we know that the correct domains
are given by the dualizable subspaces which we explicitly constructed and, in addition,
we know that they will be invariant under any collective Hamiltonian flow on the phase-
spaces.

7. Conclusions

We have analyzed some relevant geometric properties of the loop spaces related to
Poisson-Lie T-duality, mainly centred on loop actions on theσ-models phase-spaces de-
rived from the dressing transformations lifted to the cotangent bundle, having associated
equivariant momentum maps. This allowed us to describe and understand many of the
various aspects of this duality under the Hamiltonian formalism, like the explicit proce-
dure of duality transformations, a precise identification of the dualizable subspaces and
their relevance, and to reconstruct in a systematic way the well-known T-dual sigma model
Lagrangians for suitable choices of the corresponding collective Hamiltonian dynamics.
Moreover, this description allows to identify the relevant properties of the underlying in-
formation given by the models in order to be T-dual. In that way, we observed the same
construction can reproduce known generalizations of PLTD as coset model dualities[29],
duality for matched pairs[13], PL T-plurality [28] for different decompositions of the
Drinfeld double, Buscher’s duality[13,1] and duality for monodromic strings models[27],
because the underlying loop geometry enjoys the same properties for duality as the stan-
dard case. We believe that this approach can be generalized and adapted to cover many
different (new) types of dualities becoming a useful geometrical approach for the study of
T-dualities. For example, one can replaceLT ∗G∗ by other HamiltonianLDΓ -space like the
ones related to dual symmetric spaces[32] and, repeating the above construction, generate
a new collection of T-dual models for each collective Hamiltonian choice. In addition, the
construction itself will give the properties of the resulting models with respect to duality.
This can also be applied for non-perfect doubles using the symplectic leaves decomposi-
tion of [8]. More generally, one can build up new types duality diagrams by considering
symplectic groupoid or Poisson-Lie group actions instead of the usual Hamiltonian ones.
For finite dimensional PL actions, the construction given in this paper can be adapted to
describe the duality observed betweenG andG∗ Poisson sigma models[31] with its cor-
responding boundary-bulk duality transformation. It would be also interesting to repeat the
construction for the chirally extended WZNW spaces[26] which is both a loop space and a
PL space, and relate this actions to more general ones by the (Morita) equivalences of[34].
In the infinite dimensional PL case, we think that the relevant loop spaces for repeating
the diagram construction should be closely related to the ones investigated in[24]. A more
general approach based on groupoid actions might be used to study global properties of the
dualities given in[9].

Finally, we hope that, as this is an explicit description of T-dualities in the Hamiltonian
formalism, it will turn out to be usefull to analyze the resulting quantum T-dualities under
a quantization scheme adapted to the underlying geometry of the dual phase-spaces.
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